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ABSTRACT

Convective mass and heat transfer study of Sakiadis �ow of magneto-

hydrodynamic Casson �uid past a horizontal plate is produced in this

article by employing the Cattaneo-Christov heat �ux model. The gov-

erning equations are transformed into a set of ordinary di�erential equa-

tion by applying some similarity variables. A standard second-order and

a variation of third-order �nite di�erence method are employed to �nd

the e�ect of the magnetic force on the �uid system using a local similar-

ity approach. The variation in the boundary layer with the parameters

present in the problem is discussed in detail in this paper. Several dimen-

sional forms of the system are provided and the heat map of the thermal

boundary layer with di�erent parameters are investigated further in this

article. Based on the analysis, the higher the Casson parameter in the
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system, the lower the velocity of the �uid while the temperature and the

concentration increase.

Keywords: Magnetohydrodynamic, Casson �uid, Heat and mass trans-

fer, Cattaneo-Christov heat �ux model, Sakiadis �ow

1. Introduction

There are two types of �uids in our daily life; Newtonian and non-Newtonian
�uids. The non-Newtonian �uids attracted a lot of interests and have been
ongoing research among scienti�c communities due to its useful application in
many aspects of the industry. Toothpaste, ketchup, saliva and human blood are
several examples of the said �uid. Since the non-Newtonian �uid model consists
of complex characteristics, there does not exist a single equation to constitute
all the characteristics of the �uid. A typical non-Newtonian �uid model may
only capture one or two aspects of the �uid, so researchers will choose the model
that suits the most to their research analysis. Because of these limitations,
several researchers developed non-Newtonian �uid models to capture di�erent
characteristics of the model and are divided into several categories. Some �uid
model is more useful for certain application than others. Casson �uid captures
the aspect of the yield stress of the �uid which was proposed by Casson (1959)
in his study on the �ow of the pigment oil suspensions of the printing ink. It
is also the most common rheological model used in engineering and industries
since this area deals with a lot of �uids with the yield stress characteristics.
Several researches prior to the present study have been done by Mukhopadhyay
(2013), Arthur et al. (2015), Animasaun et al. (2016), Malik et al. (2016), Raju
et al. (2017) and Mythili et al. (2017).

Mass and heat transfer exists in many instances in industrial processes such
as heat conduction in mobile smartphones, human tissues, and water heater.
Heat transfer is a phenomenon in which the di�erences in temperature causes
energy transfer between some medium. The idea of the study of heat transfer
characteristics has been revolved around the well-known Fourier Law of heat
conduction for quite some time. This simplistic law may be used for a simple
system but is not suitable for a more complex set up. The downside of this
law is a small disturbance will a�ect the �uid instantly due to the parabolic
type energy equation that the law produced. Cattaneo (1948) modi�ed the
law since he thought the law is somewhat unrealistic physically from the above
standpoint of view. So, he includes a relaxation time for heat �ux, which
was further re�ned by Christov (2009) by employing the Oldroyd-B's upper
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convective derivatives. This new heat �ux model is a generalization over the
Fourier Law of heat conduction. The study of several types of �uids governing
by Cattaneo-Christov heat �ux model has been done by researchers such as Han
et al. (2014), Abbasi et al. (2015), Khan et al. (2015), Hayat et al. (016a),Waqas
et al. (2016), Sui et al. (2016), Mushtaq et al. (2016) and Vinod et al. (2017).

The objective of this article is to analyse numerically the mass and heat
transfer rate in Magnetohydrodynamic (MHD) Casson �uid with Sakiadis �ow.
The heat transfer is analysed using the Cattaneo-Christov heat �ux model as
opposed to the classical Fourier Law. The resulting velocity, temperature and
concentration gradient pro�le are computed using the �nite di�erence method
(FDM). The dimensionless parameter associated with the problems are varied
accordingly to see the e�ect of variation, and the results are discussed in the
graphical form. The novelty of this paper is the usage of Cattaneo-Christov
heat �ux model in investigating the behavior of the �uid �ow as well as the
heat and mass transfer of MHD Casson �uid employing Sakiadis �ow past a
�at plate. Previous researches uses the Fourier law of heat conduction, which is
a simple heat transfer model. Since the application of heat transfer knowledge
is vastly applied in the industries and manufacturing processes, the model is
too simple to capture the behavior of the �uid. By including the relaxation
time for heat �ux, the �uid behavior can be observed in detail.

2. Mathematical Formulation

The laminar, two-dimensional set up of MHD Casson �uid over a semi-
in�nite positive plane at y = 0 is considered as shown in Figure 1. An assump-
tion is made by assuming the plate has a constant temperature Tw, constant
concentration Cw, ambient �uid temperature T∞ and ambient concentration
C∞. For the purpose of this problem, the �uid is incompressible and electrically
conducting.
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Figure 1: Geometry representation of the �uid
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The rheological equation for a non-Newtonian �uid is de�ned as,

τ = τ0 + µα∗, (1)

where τ is the Cauchy stress tensor, µ is the dynamic viscosity of the �uid
under consideration and α∗ is the shear rate. Equivalently, for Casson �uid,
Eq.(1) can be expanded as,

τij =


2

(
µB +

py√
2π

)
eij , π > πc

2

(
µB +

py√
2πc

)
eij , π < πc

(2)

where π = eijeji with eij is the (i, j)th component of the �uid deformation

rate, py =
µB
√
2π

β
is the yield stress of the Casson �uid, µB is the dynamic

viscosity of the Casson �uid,πc is the critical value of π and β is the Casson
�uid parameter.

The governing equations of steady Sakiadis �ow of an incompressible MHD
Casson �uid are:

∂u

∂x
+
∂v

∂y
= 0, (3)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
1 +

1

β

)
∂2u

∂y2
− σB2

0

ρ
u, (4)
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+λ2
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∂2T

∂x2
+ v2

∂2T

∂y2
+ 2uv

∂2T

∂x∂y
+

(
u
∂u

∂x
+ v

∂u

∂y

)
∂T

∂x
+

(
u
∂v

∂x
+ v

∂v

∂y

)
∂T

∂y

 = α
∂2T

∂y2
. (5)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
, (6)

where x is the coordinate along the semi-in�nite plane, y is the coordinate
normal to the surface of the plate, u and v are the velocity components along the
x and y axis respectively, ν is the �uid kinematic viscosity, ρ is the density of the
�uid, σ is the electrical conductivity of the �uid, B0 is the magnetic �eld in the
direction of normal to the horizontal surface, β is the Casson parameter, Cp is
the heat capacity, T is the local temperature of the �uid, D is the mass di�usion
coe�cient and C the local mass concentration. The boundary conditions for
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Sakiadis �ow are,

u = U, v = 0, T = Tw, C = Cw at y = 0,

u→ 0, T → T∞, C → C∞ as y →∞.
(7)

To solve Eqs.(4), (5) and (6), the following similarity transformation is used,

η = y

√
U

νx
, u = Uf ′(η), v = −1

2

√
Uν

x
(f − ηf ′),

θ =
T − T∞
Tw − T∞

, φ =
C − C∞
Cw − C∞

.

(8)

By the above transformation, Eq.(3) is satis�ed unconditionally. Using trans-
formation (8), Eqs.(4), (5) and (6) are then transformed into the following:(

1 +
1

β

)
f ′′′ +

1

2
ff ′′ −Mf ′ = 0, (9)

1

Pr
θ′′ +

1

2
fθ′ − γ

2

(
3ff ′θ′ + f2θ′′

)
= 0, (10)

φ′′ +
Sc

2
fφ′ = 0. (11)

By using the same transformation, the boundary conditions (7) are reduced
into the following:

f(0) = 0, f ′(0) = 0, f → 1 as η →∞,

θ(0) = 1, θ → 0 as η →∞,

φ(0) = 1, φ→ 0 as η →∞.

(12)

where β =
µB
√
2πc

py
is the Casson parameter, M =

σB2
0x

Uρ
is the magnetic �eld

parameter or Hartmann number, Pr =
ν

α
is the Prandtl number, γ =

λ2U

2x
is

the local Deborah number for temperature and Sc =
ν

D
is the Schmidt number.

Since the parameters M and γ contains the function of x, the local similarity
solutions are used instead, and the local solution found can be used to see the
e�ect of parameters on the system.
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3. Results and Discussion

To solve the nonlinear boundary value problem (9), a newly developed �nite
di�erence method (FDM) that was proposed by Pandey (2017) was used. For
Eqs. (10) and (11) the method which presented by Burden and Faires (2011)
was employed. All computations were done with a tolerance of ε = 10−5.
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Figure 2: The �uid velocity gradient for several values of: (a) β when M = 0.5 (left); (b) M when
β = 0.5 (right); with Pr = Sc = 1 and γ = 0.5

Figure 2a shows the �uid velocity pro�le for some Casson parameter. As β
increases, the �uid velocity decreases. This means as the �uid tends to behave
like the Newtonian �uid, i.e. β →∞, the magnitude of �uid velocity decreases.
Consequently, this produces a thinner momentum boundary layer of the �uid.
This also means that the Newtonian-behaviour �uid will produce a thinner
momentum boundary layer than Casson-behaviour �uid. Figure 2b presents
the �uid velocity pro�le for some Hartmann number. From Figure 2b, the �uid
velocity decreases as M increases signi�cantly. As M increases, the velocity
of the Casson �uid is disturbed by the Lorenz force present in the �uid and
thus helps the �uid to move faster, and in turns, produce a thinner momentum
boundary layer. It can be concluded that the higher the Hartmann number,
the thinner the momentum boundary layer.

The e�ect of Casson parameter on the �uid temperature gradient is shown
in Figure 3a. Based on the Figure 3a, as β increases, the �uid temperature
gradient increases insigni�cantly. This means as the �uid behaves more like
Newtonian �uid (as β →∞), the thermal boundary layer becomes thicker and
produce a lower rate of the heat dissipation in the system. It can be concluded
that the �uid that behaves like Casson behaviour has a higher heat dissipation
than Newtonian-like �uid. Figure 3b presents the e�ect of Hartmann number
on the �uid temperature. In Figure 3b, as M increases, the Casson �uid tem-
perature gradient increases. Since the presence of the magnetic �eld in the

130 Malaysian Journal of Mathematical Sciences



MHD Casson Fluid Flow Over A Surface Using Cattaneo-Christov Heat Flux Model

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ(
η)

 

 

β = 0.5, 1.0, 1.5, 2.0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ(
η)

 

 

M = 0.0, 0.4, 0.8, 1.2

Figure 3: The �uid temperature gradient for several values of: (a) β when M = 0.5(left); (b) M
when β = 0.5(right); with Pr = Sc = 1 and γ = 0.5

system produces Lorenz force, this causes the said force to disturb the heat
dissipation of the �uid by retarding the rate of the heat transfer in the �uid.
This causes the thermal boundary layer to become thicker as M increases.

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η
 

 

θ(
η) Pr = 0.8, 1.0, 1.2, 1.4

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ(
η)

 

 

γ = 0.0, 0.2, 0.4, 0.5, 0.6

Figure 4: The �uid temperature gradient for several values of: (a) Pr when γ = 0.5 (left); (b) γ
when Pr= 1 (right); with β = M = 0.5 and Sc= 0.5

Figure 4a presents the e�ect of Prandtl number on the �uid temperature.
As the value of Pr increases, the temperature gradient of the �uid decreases.
As Pr increases, the momentum di�usivity increases and dominates the ther-
mal di�usivity. The �uid velocity is high enough to help the heat transfer of
the �uid. This, makes the heat dissipation rate faster and makes the boundary
layer to become thinner. It can be seen that Figure 4b shows the e�ect of the
local Deborah number, γ on the �uid temperature gradient. The temperature
gradient of the system increases at �rst, but later at η ≈ 2, the temperature
gradient drops when the value of gamma rises. From this observation, it can be
noted that the heat transfer relaxation time of the �uid increases, which pro-
duces a thinner boundary layer of the �uid. This illustrates that the dissipation
of heat occurs at a faster rate.
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Figure 5: The �uid concentration gradient for several values of: (a) β when M = 0.5 and Sc = 1
(top, left); (b) M when β = 0.5 and Sc = 1 (top, right); (c) Sc when β = M = 0.5 (bottom); with
Pr = 1 and γ = 0.5

The e�ect of Casson parameter to the �uid concentration gradient is shown
in Figure 5a. As β rises, the concentration gradient increases insigni�cantly.
This means as the �uid employs more of the characteristics of a Newtonian �uid
(as β →∞), the concentration boundary layer to become thicker and produce
a low mass transfer rate. It can be concluded that the �uid that behaves like
Casson behaviour has a higher mass transfer rate than Newtonian-like �uid.
Figure 5b shows the e�ect of the magnetic force on the concentration gradient
of the �uid. Since magnetic �eld strength in the system is represented by
the Hartmann number in the system, as M increases, the �uid concentration
gradient increases. This is because the presence of the magnetic �elds through
Lorenz force retards the mass transfer rate of the �uid by applying opposite
force. This causes the concentration boundary layer becomes thicker as M
increases. The e�ect of the Schmidt number onto the �uid mass distribution
is shown in Figure 5c. It can be seen from Figure 5c that as Sc increases,
the concentration gradient decrease. It means that the higher ratio of �uid
momentum di�usivity and �uid mass di�usivity in the system resulted in a
thinner boundary layer of mass transfer.
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Table 1: The physical properties for selected �uid

Fluid Pr T∞(◦C) ν (cm2/s)

Gaseous ammonia 1.5-2 25 0.145

The dimensional form for some type of system is presented for a better
understanding of the results produced earlier. Table 1 presents the physical
properties of �uid used to demonstrate the system in a real-world situation.
Figure 6 showed the heat map of gaseous ammonia at a constant T∞, Tw, U∞,
M , γ and Sc, with β = 0.5 for Figure 6a and β = 2.0 for Figure 6b. It can be
shown from Figure 6 that the thermal boundary layer for β = 0.5 is thinner
than β = 2.0. Based on the Figure 6, it can be concluded that as the Casson
parameter increases, it produce a thicker thermal boundary layer, which means
the heat dissipation rate decreases. This result strengthens the result found in
Figure 2a.
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Figure 6: The heat map of gaseous ammonia with: (a) β = 0.5; (b) β = 2.0; at T∞ = 25◦C with
U∞ = 100 cm/s, Tw = 100◦C, M= γ = 0.5 and Sc= 1
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Figure 7: The heat map of gaseous ammonia with: (a) γ = 0.0; (b) γ = 0.6; at T∞ = 25◦C with
U∞ = 100 cm/s, Tw = 100◦C, M= β = 0.5 and Sc= 1
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Figures 7 presented the heat map of Sakiadis �ow for gaseous ammonia
at a constant T∞, Tw, U∞, β, M and Sc, with γ = 0.0 for Figure 7a and
γ = 0.6 for Figure 7b. Noted that γ = 0.0 corresponds to the classical simplistic
Fourier law heat transfer model. Based on the heat map shown in Figures
7a and 7b, the thermal boundary layer for γ = 0.0 is thicker than that for
γ = 0.6. This means that when the �uid behaves like Fourier law model, the
heat dissipation is not as e�cient as Cattaneo-Christov heat �ux model. In
conclusion, Cattaneo-Christov heat �ux model increase the e�ciency of heat
dissipation in the system. This observation is in match with the analysis from
Figure 4b.

4. Conclusion

This article discusses the convective mass and heat transfer of Sakiadis
�uid �ow of Magnetohydrodynamic Casson �uid over a horizontal surface by
employing Cattaneo-Christov heat �ux model. The summary of the work is
listed below:

1. The higher Casson parameter causes the velocity pro�le to decrease but
vice versa for the temperature and the concentration pro�le.

2. As the Hartmann number increases, the lower the �uid velocity in the
system but the temperature and concentration of the �uid increase.

3. Increasing the local Deborah number for temperature produce the lower
temperature gradient of the �uid.

4. The higher the Prandtl number, the lower the temperature gradient of
the �uid.

5. For a higher Schmidt number, the �uid concentration gradient in the
system decreases.

6. The boundary layer thickness decreases with the increase of the local
Deborah number for temperature but produce a thicker boundary layer
with the increase of the Casson parameter.
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